Industrial Image Anomaly Detection

2025.06.13

Data Mining & Quality Analytics Lab.

=32

IIIIIIIIIII



0

FH=2 (Changwook Chu)

. ;Cietm Aol

«  Data Mining & Quality Analytics Lab. (243

e MS. Student (2023.09 ~ Present)

Research Interest
 Diffusion Models for Time Series

* Large Language Models

Contact

e chaliechu117@korea.ackr

k
[=13m| A}%ﬁ g_gékm [Hz‘sl-% tz‘sl-

KOREA

UNIVERSITY



Contents

/

% Industrial Anomaly Detection

» PatchCore: Towards Total Recall in Industrial Anomaly Detection (2022, CVPR)
* FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction (2023, ICCV)

« AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection (2024, ICLR)

%+ Conclusion

w KOREA

82/ UNIVERSITY




Introduction

< O|O]x] o] BTk £

«  CEHCR Ol HO|HE Ta9| 2ESHK| 2otz o&s 7Pdot0] d¢ H|0|HEE ot
- ZHOOIH7L 71E EFZ 7|HIo 2 0|2t CHE A1t/ 2HlA| O| 42 = EFX|
Normal data Training step

QDR0O0E A ——
. . . . . distribution
..... :> Anomaly detection :>
Q0000 =

/ Anomaly data Testing step \

Normal data
Anomaly detection :>
model

v

distribution

: Threshold

Anomaly data
distribution

w KOREA

82/ UNIVERSITY




Unsupervised Anomaly Detection

/7

% Unsupervised Anomaly Detection

« o5 Al HEY HO[ES[ AHE O F B 20l 770 2t 257

Supervised
Anomaly Detection

i

3

Sk Al 01T E HA/HITA
HiojE| 25 ALSS F9
2Y A5 B EE

S
Class imbalance 2X| 7} 2444

One-class
Anomaly Detection

Unsupervised
Anomaly Detection

otg Al HIO[E7L i 2 BE2=

=

o|ZofHCtn 71
HlolE0f 0| 20| gl AP ES

—
o

SE 7Y ARG &

—

w KOREA

82/ UNIVERSITY




Unsupervised Anomaly Detection

% Unsupervised Anomaly Detection
- OO|H7I R & Y22 O|FH ALt 7HFdst 2 of5 202 X)
«  Density-based: d&f OIO|H| 22 & Sdlf H|'H<} H|O|E &X|
»  Classification-based: Proxy task ‘H2| = st &Il 8! one-class dlassification =-&5+0f H|H < EHX|
Reconstruction-based: ‘J¢f O|0|H BtE SRS S sH&5510] HIE Y HIO|H =& A| T =& Autet

AHO|2 H|Z4 HIOIH &A|

|

w KOREA

82/ UNIVERSITY




Unsupervised Anomaly Detection

/7

% Unsupervised Anomaly Detection
- OO|H7I R & Y22 O|FH ALt 7HFdst 2 of5 202 X)

«  Density-based: d&f OIO|H| 22 & Sdlf H|'H<} H|O|E &X|

Density-based method
Feature map

7

Pre-trained CNN —

= Anomaly score
Test Feature map

Pre-trained CNN —

o
T R S S R S e e e e S e e e o

w KOREA

82/ UNIVERSITY
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% PatchCore: Towards Total Recall in Industrial Anomaly Detection
«  CVPR2022 &, 2025 63 7|&E 13192| 218

Towards Total Recall in Industrial Anomaly Detection

Karsten Roth'*, Latha Pemula?, Joaquin Zepeda?, Bernhard Scholkopf?, Thomas Brox?, Peter Gehler?
'University of Tiibingen 2Amazon AWS

Abstract

Being able to spot defective parts is a critical component
in large-scale industrial manufacturing. A particular chal-
lenge that we address in this work is the cold-start problem:
fit a model using nominal (non-defective) example images
only. While handcrafted solutions per class are possible,
the goal is to build systems that work well simultaneously
on many different tasks automatically. The best peform-
ing approaches combine embeddings from ImageNet mod-
els with an outlier detection model. In this paper, we extend
on this line of work and propose PatchCore, which uses
a maximally representative memory bank of nominal patch-
Jeatures. PatchCore offers competitive inference times while

Figure 1. Examples from the MVTec benchmark datasets. Super-

achieving state-of-the-art performance for both detection

imposed on the images are the segmentation results from Parch-

and localization. On the challenging, widely used MVTec Core. The orange boundary denotes anomaly contours of actual
AD benchmark PatchCore achieves an image-level anomaly segmentation maps for anomalies such as broken glass, scratches,
detection AUROC score of up to 99.6%, more than halving burns or structural changes in blue-orange color gradients.

the error compared to the next best competitor. We fur-
ther report competitive results on two additional datasets
and also find competitive results in the few samples regime.
Code: github.com/amazon-research/patchcore-inspection.

vary from subtle changes such as thin scratches to larger
structural defects like missing components [5]. Some ex-
amples from the MVTec AD benchmark along with results
from our proposed method are shown in Figure 1. Existing

Roth, Karsten, et al."Towards Total Recallin Industrial Anomaly Detection." 2022 IEEE/CVF Conference on Computer Vision and Pattem Recogniion (CVPR). IEEE, 2022
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«  SPADE: Sub-Image Anomaly Detection with Deep Pyramid Correspondences (2020, arXiv, 6032 ¢1-8)
. PaDiM : a Patch Distribution Modeling Framework for Anomaly Detection and Localization (2021, ICPR,

10582| 218

Sub-Image Anomaly Detection with Deep

Pyramid Correspondences

Niv Cohen and Yedid Hoshen

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel.
{niv.cohen2,yedid. hoshen}@mail .huji.ac.il

Abstract. Nearest neighbor (kNKN) methods utilizing deep pre-trained
features exhibit very strong anomaly detection performance when ap-
plied to entire images. A limitation of kNN methods is the lack of seg-
mentation map describing where the anomaly lies inside the image. In
this work we present a novel anomaly segmentation approach based on
alignment between an anomalous image and a constant number of the
similar normal images, Our method, Semantic Pyramid Anomaly Detec-
tion (SPADE) uses correspondences based on a multi-resolution feature
pyramid. SPADE is shown to achieve state-of-the-art performance on un-
supervised anomaly detection and localization while requiring virtually
no traiming tinme.

PaDiM: a Patch Distribution Modeling Framework
for Anomaly Detection and Localization

Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
thomas.defard @imt-atlantique.net, {aleksandr.setkov, angelique.loesch, romaric.audigier} @cea.fr

Abstract—We present a new framework for Patch Distribution
Modeling, PaDiM, to concurrently detect and localize anomalies
in images in a one-class learning setting. PaDiM makes use
of a pretrained convolutional neural network (CNN) for patch
embedding, and of multivariate Gaussian distributions to get a
probabilistic representation of the normal class. It also exploits
correlations between the different semantic levels of CNN to
better localize anomalies. PaDiM outperforms current state-of-
the-art approaches for both anomaly detection and localization
on the MVTec AD and STC datasets. To match real-world visual
industrial inspection, we extend the evaluation protocol to assess
performance of anomaly localization algorithms on non-aligned
dataset. The state-of-the-art performance and low complexity of
PaDiM make it a good candidate for many industrial applications.

I. INTRODUCTION

Humans are able to detect heterogeneous or unexpected
patterns in a set of homogeneous natural images. This task is
known as anomaly or novelty detection and has a large number
of applications, among which visual industrial inspections.

Cohen, Niv, and Yedid Hoshen. "Sub-image anomaly detection with deep pyramid comespondences."arXiv preprint anXivi2005.02357 (2020).
Defard, T., Setkov, A., Loesch, A., & Audigier, R. (2021, January). Padim: a patch distribution modeling framework for anomaly detection and localization. In Intemational confierence on pattem recognition (pp. 475-489). Cham: Springer Intemational Publishing.
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Figure 2: Overview of PatchCore. During training, nominal samples are broken down into a memory bank of neighbourhood-
aware patch-level features. For reduced redundancy and inference time, this memory bank is downsampled via greedy coreset
subsampling. At test time, images are classified as anomalies if at least on patch is anomalous, and pixel-level anomaly
segmentation is generated by scoring each patch-feature.
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% FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction
. ICCv 2023 AlH|

FastRecon: Few-shot Industrial Anomaly Detection via Fast
Feature Reconstruction

Zheng Fang*'  Xiaoyang Wang'?'  Haocheng Li® Jiejie Liu'® Qiugui Hu® Jimin Xiao*
IXJTLU  2Metavisioncn  *Dinnar Automation Technology
{fz.jun26th, haocheng.li789}@gmail.com,

{xiaoyang.wang20, jiejie.liuZZ}@student.thlu.edu.cn, Jjimin.xiao@xjtlu.edu.cn

Fang, Zheng, etal. "Fastrecon: Few-shotindustrial anomaly detection via fast feature reconstruction.” Proceedings of the IEEE/CVF Intemational Conference on Computer Vision. 2023.
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Experiments

% Few-shot 7|dt ADQ} H| 1t

2, 4, 8 shotOf| i3 A Tl
D= 7t 202|0f CHeH AUROC B4t

DEXHE=E =S 22 E2

‘ ‘ AUROC at Image-level

AUROC at Pixel-level

TDG DiffNet RegAD PaDiM PatchCore FastRcon | RegAD PaDiM  PatchCore FastRcon

Dataset | k
[25] [19] [15] [7] [15] (ours) [15] [7] [15] (ours)
217120 80.60 85.70 78.90 87.81 90.97 94.60 90.50 94.75 95.86
MVTec | 4 | 7270  81.30 88.20 71.60 89.49 94.24 95.80 80.20 94.99 96.98
8 | 7520  83.20 91.20 75.30 94.31 95.19 96.70 80.50 95.60 97.27
2 1 60.30 60.20 63.40 - 59.55 73.65 93.20 - 79.15 97.03
MPDD | 4 | 63.50 63.30 68.30 - 59.78 79.85 93.90 - 79.82 97.60
8 | 68.20 68.50 71.90 - 59.95 82.50 95.10 - 80.30 97.92
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Experiments

% Few-shot 7|dt ADQ} H| 1t

»  4-shotOf CHot Ae Tl

o
= < [
«  F7IX| Hlo|g el Z; ZiE| 2 2|0l Chet &5
= o) Lo
« [fFEF FastReconO| 7t £2 452 EY
| RegAD|[13] | PatchCore[1%] | FastRecon | RegAD[!3] | PatchCore[I8]  FastRecon
Category | Image Pixel | Image Pixel | Image Pixel Category | Image Pixel | Image Pixel Image Pixel
Bottle 9940 9840 | 99.60 98.60 | 9944 9850 Bracket_black | 63.80 - 5890 79.10 7181 95.54
Cable 76.10 9270 | 97.40 97.90 | 9379 96.12 Bracket_brown | 66.10 - 70.80 7730 6334 9593
Capsule | 7240 97.60 | 6630 97.70 | 90.07 98.96 Bracket_white | 5930 - | 70.70 6930 ~ 69.44  98.89
Carpet 97.90  98.90 | 99.00 99.00 = 99.90 99.15 Connector | 77.20 - | 59.40 8640 97.62 98.04
Grid 91.20 85.70 63.00 70.60 88.81 86.32 Metal_plate 78.60 - 64.40 86.70 100.00 99.29
Hazelnut | 9580 98.00 | 9280 97.00 | 99.32 98.59 Tubes 6750 - | 3450 80.10 76307 9759
Leather 100.00 99.10 | 100.00 96.90 | 100.00 99.20 Average | 68.30 93.90 | 5978 79.82  79.85 97.60
Metal_ Nut | 94.60 97.80 | 94.70 97.00 | 99.12 98.72
SP ill 2?23 g;gg gj?g gg?g 2332 ggiﬁ Table 3: FSAD categorical performance comparisons in
glegv 9;'50 94'90 106 00 96-00 100' 00 96.73 AUROC (%) T on MPDD dataset. Results are from the set-
Toothbrush 9090 9850 95.:-)‘0 9880 93‘6] 99:04 tmg of shot k = 4. The best results are in bold. Our method
Transistor | 85.20 93.80 | 98.40 95.00 | 9729 94.18 achieves the best performance in most categories.
Wood 98.60 9470 | 9740 93.10 | 99.29 94.94
Zipper 88.50 94.00 | 95.50 98.30 | 96.95 98.89

Average ‘ 88.20 9580 | 89.49 94.99 | 9424 96.98

Table 2: FSAD categorical performance comparisons in
AUROC (%) 1 on MVTec dataset. Results are from the
setting of shot &k = 4. The best results are in bold. Our
method achieves the best performance in most categories.
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Zero-shot Anomaly Detection

% Zero-shot Anomaly Detection (ZSAD)
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Zero-shot Anomaly Detection

% Zero-shot Anomaly Detection (ZSAD)
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Zero-shot Anomaly Detection

% Zero-shot Anomaly Detection (ZSAD)
- HIAE 0|0]X|0f|= =50 AFESt O|0[X|2t FAleH O & THES ZHK| 1 QU

- 1 d

rir
oy
4o
N
£0
0jo

« Old Y= BAlE =+ s Aoj2tE 71

o 1 =

Auxiliary data Test data

Metal plate
(Visa)

Metal nut Capsule
(MVTec AD) (MVTec AD)

Skin
(ISIC)

Transistor iI o
(MVTec AD) (MVTec AD)

Carpet Leather Class1 Colon
(MVTec AD) (MVTec AD) ; (DAGM) (ColonDB)

Zhou,Q,Pang, G, Tian, Y., He, S., & Chen, J. (2024,). AnomalyCLIP: Object-agnostic Prompt Leaming for Zero-shot Anomaly Detection. In ICLR.
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Zero-shot Anomaly Detection

/7

< AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection
ICLR 2024 A/ A

ANOMALYCLIP: OBJECT-AGNOSTIC PROMPT LEARN-
ING FOR ZERO-SHOT ANOMALY DETECTION

Qihang Zhou'*, Guansong Pang’*, Yu Tian’, Shibo He'!, Jiming Chen!’
'Zhejiang University > Singapore Management University ~ *Harvard University
'{zqhang, s18he, cim}@zju.edu.cn ’gspang@smu.edu. sg
3ytianll@meei.harvard.edu

Zhou, Q,Pang, G, Tian, Y., He, S., & Chen, J. (2024,). AnomalyCLIP: Object-agnostic Prompt Leaming for Zero-shot Anomaly Detection. In ICLR.
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% Overview of AnomalyCLIP

«  Contrastive Language-Image Pre-Training (CLIP) 22l &2
- O[OjX[o] MHAQlI EF1I MEHQ EH S SA0f 2o HIAEQL &) St

31 tj\f! t’M'
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; ‘u:> o} o] 5> X y Lgiobal
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[* .. [damaged objectﬂ = a & ) A f
: B B B A I/M\I
g, Anomalous text prompt Al
Object-agnostic learnable text prompt Text encoder y
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y 3
i o e, ()
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il S5 N 2.5
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image
Block 1 Block 2 Block 4 Visual embedding
“ Learnable Vision encoder

-

o AP . A Y - €T :
;§¢€Frozen Layer DPAM layer Layer Original layer '\x Cosine similarity '..\-__!:,' Element-wise sum '\M; Maximum

Zhou, Q,Pang, G, Tian, Y., He, S., & Chen, J. (2024,). AnomalyCLIP: Object-agnostic Prompt Leaming for Zero-shot Anomaly Detection. In ICLR.
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«»  What is CLIP?

« Y vision language model?! CLIPE &
. 223t QHist M52 H0|7| [-20f ZSAD ATEES0|A] SHetsHA AFR

(1) Contrastive pre-training

A photo of R Toxt

dog | Encoder

G()

Text prompt

» Aphoto of a [cls]

=HHE SAE-O[0|X| 2 FAE 1
ERE Y2 RAE Y

L e

Image I LT
Encoder 3 3701

F(C)

=l

T T3 Tn
L I'Ty | LTy | I'Ty I;'Ty
L LT | Ty | LT, LTy
I3'T2 13'T3 I3ATN
In INTy | INTy | InT3 In‘Tn

EI’p({ e, fi = /’i")
ZL’EC Eﬂ?p({ ‘d:'afz' >)/T)

Cosine similarity: <->

Radford, A., Kim,J. W.,Hallacy, C., Ramesh, A, Goh, G., Agawa, S., ... & Sutskever, |. (2021, July). Leaming fransferable visual models from natural language supervision. In Intemational conference on machine leaming (pp. 8748-8763). PmLR.
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% CLIP in Anomaly Detection

- O[0JX| L B&d/oleh FERLH=E O dassQUX| /o= S22t A=
«  Anomaly Detection2 & = = M| 2R
. - Text prompt
(1) Contrastive pre-training » Aphoto ofa[cls]
Aphotoof ﬁ SHLE EHIAE.O|0|X| M2 AL 1
%9 7 Encoder HRE M2 QAR |
G()
T T T; Tn l
I LTy | I Ty | 1T I'Tn E:Bp({ Ge. fi = /’T)
\‘ 15} LT | LTy | LT LTy ZCEC E.ﬂ"j’p({ "i-’a fz' >)/T)
Image 13 Is'Tl 13'T2 13'T3 I3‘TN
Encoder Cosine similarity: <->
F(C)
IN IN'T] IN'T2 IN'T3 IN'TN

Radford, A., Kim,J. W.,Hallacy, C., Ramesh, A, Goh, G., Agawa, S., ... & Sutskever, |. (2021, July). Leaming fransferable visual models from natural language supervision. In Intemational conference on machine leaming (pp. 8748-8763). PmLR.
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% Object-Aware Text Prompt
e CLUPOA| AHESH= FIAE I EIZE “A photo of [ds]"= O|&HX| EFX|0f &EX| &5
/Ol SEO| Ot EREES B

v A phot of [cls] with scratches
. O QuisiEl O|AK| EX|8 ZEZETL LR

a— a

CLIP text prompt: “A photo of capsule”

o

“A photo of capsule with scratches”
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% Object-Aware Text Prompt
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0 ——

CLIP text prompt: “A photo of capsule”

o
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Aﬂ_to o
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FH2 0|
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% Object-Aware Text Prompt
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% Object-Agnostic Text Prompt
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% Object-Agnostic Text Prompt
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% Glocal context optimization
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% Glocal context optimization

« M object-agnostic text promptE O{EH =5 2

= = A

s
ro
\J
-

«  O|&XK| EfX|E globald} local 2+ 0| A O &X[E EFX|SHOF &t
A

v Globalloss (Lyopa): O10IX FiAO] QST BAE mE2mE QH|Y 7to| TR SALE

v Llocalloss (Ljpeq): OIDIX[OA &2 2} THX|QF HAE TEIE QH|E 7] H|

i thy - tap

[“ ..( object ) J By BN B % extual embedding

g, Normal text prompt = = =2 4 M| Similarity

) 3 o) & {i ' \x‘ ‘ score Lglobal
[0 .---.[damaged objectj > . = 21— A . ~ f
N 3 3 D

g, Anomalous text prompt Ry

Object-agnostic learnable text prompt Text encoder ) 4

l 7 x\' Ground truth

s L
oy
¢ x._ local
X ‘l

y T
-
A *

I Similarity map

*
ayer-#«
La:yer%
Layer -
|
ayer-ie
Layer-#e

—
Block 1 \Block 2 Bloc!

\ _/
e N I ~
T F
P d O s O
Auxiliary Sy _@_» Sl & _@_,
image = =1 =

* Learnable Vision encoder

:‘§§£ Frozen | Layer DPAM layer

=
P

Local visual
embedding

La.yer*ﬁj f
Léyer»ﬁ:

(7

Visual embedding

@
(=]
x)
=~
—
@
o
o
=
%)
)
(=]
=
s

[o

|

N T T ‘ an _
Layer Original layer \x Cosine similarity \-!-‘ Element-wise sum 'r\M, Maximum

[Local loss A4+ it

- 58- KOREA

UNIVERSITY



Method

sssss

0’0

Glocal context optimization

Ground truth

+—

M object-agnostic text promptE O EH| &g Z4Q17¢ =
° OIAol-Xl Eml-xlé glObalJ_l_I- |Oca| _Tllll-x-l Ol"A-I Ol xl = I-xl-é-HOl: -%I- gi::”‘ Layer  DPAM layer VISI::err‘cof):;ma\ tayer (3€) Cosine similari :: :::en(—:iesum V) Maximum
v Globalloss (Lyiope): Ol0IX] TH[Q| AT HIAE TEZE QH|T 7| AALRI RALE
v Local loss (Lpeq): O1OIX|Of A &2 2} DX HIAE mEZE QH|E 7+ H|WL
S ol =18
Mo e (K 'k (&) K
T T Sn]' =< gn! f(]’ )> Sa]’ _< ga, f(] )
Vo gy SY TEDE QH|T HIEH '
v g0l TEZE QH|T B

x|o4 oja|x|

H| &
v fUR.0[0|X|9] QIX| ¢, k)oll SHLSH= ThA| b &
Ground Truth O|AH OFA S §

v 5}.’,{:190@

Cosine similarity: <->

Lipcaqr = Focal (Up ([S Ui g (]’k)]) ,S],k)
+Dice (Up (57),1 -
+Dice (Up (ng"‘)) S]k) \
AN

SIS0 el dXl= 8=

05l Zto| CHS 2 HES LiEpY \
— 0| &fiolo] rhef 2kl He
[local loss ]|

-59-

w KOREA




Method

% Glocal context optimization
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Experiments

«» Main result — Industrial domain
. DEXHEEE=TEE

oE
v’ AUROC ™At O| M2 &ofLt &

ZUR=A?
v’ AP (Average Precision). O| 4 0[2t11 0| =5t A= & L0t HU=X|?
v PRO (Per-Region Overlap). ’dl tH9|2 0|&f Aol QXS LOtLt & =7
*  MViecAD HAE HO|HAC 2 D|M=F = ChE =M Q H|O]E A0 Chol 22 Ty
* MVTec AD E7} Al0f= VisA HIO|E{ 2| H|AE H|O|E{ 2 E7}
Task Category Datasets |C| CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Obj &texture MVTec AD 15 (74.1, 87.6) (71.5, 86.4) (91.8, 96.5)1 (86.1, 93.5)! (88.8, 94.8) (91.5,96.2)
VisA 12 664, 71.5)  (65.0,70.1y  (78.1, RI.2}'Ir (78.0, 81.4]Jlr (62.8, 68.1) (82.1, 85.4)
Image-level Obi MPDD 6 (543.654) (562.66.0)  (63.6,69.9)  (73.0,802)  (55.1.64.2)  (77.0,82.0)
(AUROC, AP) ! BTAD 3 (345,525 (51.0,621)  (68.2,70.9)  (73.6,686)  (66.8,77.4)  (88.3,87.3)
5DD | (65.7.45.2) (65.2,45.7) (84.3,77.4) (79.8,71.4) (74.9, 65.1) (84.7, 80.0)
Texture DAGM 10 (79.6, 59.0) (82.5,63.7) (91.8,79.5) (94.4, 83.8) (87.5,74.6) (97.5,92.3)
DTD-Synthetic 12 (71.6,85.7) (66.8, 83.2) (93.2,92.6) (86.4, 95.0) (-, -) (93.5,97.0)
Obj &texture MVTec AD 15 (384, 11.3) (38.2,11.6) (85.1, 64.&}* (87.6, 4—4.[]}* (33.3,6.7) (91.1, 81.4)
VisA 12 (46.6,14.8) (478,17.3) (79.6,56.8)7 (9428687 (242,38 (95.5, 87.0)
Pixel-level Ob MPDD 6 (62.1,33.0) (58.7, 29.1) (76.4, 48.9) (94.1, 83.2) (15.4, 2.3) (96.5, 88.7)
(AUROC, PRO) ! BTAD 3 (30.6.44) (328.83)  (727.27.3)  (60.8,25.0)  (28.6,3.8)  (94.2,74.8)
5DD | (39.0, 8.9) (32.5,5.8) (68.8, 24.2) (79.8, 65.1) (28.9,7.1) (90.6, 67.8)
Texiure DAGM 10 (28.2,2.9) (32.7,4.8) (87.6, 65.7) (82.4, 66.2) (17.5,2.1) (95.6,91.0)
DTD-Synthetic 12 (33.9, 12.5) (23.7,5.5) (83.9,57.8) (95.3, 86.9) (- =) (97.9, 92.3)
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%+ Main result — Medical domain
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Task Category Datasets |C| CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
HeadCT 1 (56.5,58.4)  (60.0,60.7) (81.8,80.2) (89.1,894) (78.4,78.8) (93.4,91.6)
Image-level Brain BrainMRI 1 (73.9,81.7)  (80.6,86.4) (86.6,91.5) (89.3,90.9) (61.3,44.9) (90.3,92.2)
(AUROC, AP) Br35H 1 (78.4,78.8)  (82.7.81.3) (80.5,82.2) (93.1,929) (86.0,87.5) (94.6, 94.7)
Chest COVID-19 1 (73.7,42.4)  (75.0,459) (66.4,42.9) (15.5,8.5) (25.3,9.2) (80.1, 58.7)
Skin ISIC 1 (33.1,5.8) (36.0,7.7) (83.3,55.1) (89.4,77.2) (51.7,15.9) (89.7, 78.4)
CVC-ColonDB 1 (49.5,15.8) (495,115) (70.3,32.5) (784, 64.6) (40.5, 2.6) (81.9,71.3)
Pixel-level Colon CVC-ClinicDB 1 (47.5,18.9) (48.5,12.6)  (51.2,13.8)  (80.5, 60.7) (34.8,2.4) (82.9, 67.8)
(AUROC, PRO) Kvasir 1 (44.6,17.7)  (45.0.16.8) (69.7.24.5) (75.0,36.2) (44.1,3.5) (78.9, 45.6)
Endo 1 (45.2,159) (46.6,12.6) (68.2,28.3) (81.9,549) (40.6,3.9) (84.1, 63.6)
Thyroid TN3K 1 (42.3,7.3) (35.6,5.2) (70.7,39.8)  (73.6,37.8) (34.0,9.5) (81.5,50.4)
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% Industrial Image Anomaly Detection
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Conclusion

% PatchCore: Towards Total Recall in Industrial Anomaly Detection
e AN SEE DEHZ B2 featureS EEXOE AR
v  ANEESE RREEH &2 featureE locally awareSHA| Bt
v Coreset subsampling= &5l 22 ¢l Al4t0| 7ts
« O =E2dss BE0E
'.Trammg' .Tgmng .............................................. s
: locally aware : PatchCore )
: patch features / '\\ : locally aware
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i) (e T =
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A= Search
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Figure 2: Overview of PatchCore. During training, nominal samples are broken down into a memory bank of neighbourhood-
aware patch-level features. For reduced redundancy and inference time, this memory bank is downsampled via greedy coreset
subsampling. At test time, images are classified as anomalies if at least on patch is anomalous, and pixel-level anomaly
segmentation is generated by scoring each patch-feature.
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% FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction
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Conclusion

< AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection
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